Value $\sum\limits_{r = 0}^{15} {\left( {{}^{15}{C_r}{}^{40}{C_{15}}{}^{20}{C_r} - {}^{35}{C_{15}}{}^{15}{C_r}{}^{25}{C_r}} \right)} $ is-

  • A

    $0$

  • B

    ${{}^{40}{C_{15}} - {}^{35}{C_{15}}}$

  • C

    ${{}^{35}{C_{15}} - {}^{40}{C_{15}}}$

  • D

    $^{40}C_{15}$

Similar Questions

The sum of the series $\left( {\begin{array}{*{20}{c}}{20}\\0\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\1\end{array}} \right)$$+$$\left( {\begin{array}{*{20}{c}}{20}\\2\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\3\end{array}} \right)$$+…..-……+$$\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$ 

  • [AIEEE 2007]

The sum of coefficients in the expansion of ${(1 + x + {x^2})^n}$ is

If ${ }^{20} \mathrm{C}_{\mathrm{r}}$ is the co-efficient of $\mathrm{x}^{\mathrm{r}}$ in the expansion of $(1+x)^{20}$, then the value of $\sum_{r=0}^{20} r^{2}\,\,{ }^{20} C_{r}$ is equal to :

  • [JEE MAIN 2021]

If $1+\left(2+{ }^{49} C _{1}+{ }^{49} C _{2}+\ldots .+{ }^{49} C _{49}\right)\left({ }^{50} C _{2}+{ }^{50} C _{4}+\right.$ $\ldots . .+{ }^{50} C _{ so }$ ) is equal to $2^{ n } . m$, where $m$ is odd, then $n$ $+m$ is equal to.

  • [JEE MAIN 2022]

If $\left({ }^{30} C _1\right)^2+2\left({ }^{30} C _2\right)^2+3\left({ }^{30} C _3\right)^2+\ldots \ldots+30\left({ }^{30} C _{30}\right)^2=$ $\frac{\alpha 60 !}{(30 !)^2}$, then $\alpha$ is equal to

  • [JEE MAIN 2023]